ESTIMATING $||d\varphi^t||$ FOR UNIT VECTOR FIELDS WHOSE ORBITS ARE GEODESICS

H. E. WINKELNKEMPER

Introduction

In the following, all manifolds, vector fields, etc., will be assumed to be real analytic. Let M be a connected, n-dimensional, complete riemannian manifold, and v a unit vector field (i.e., $|v| \equiv 1$) all of whose orbits are geodesics of M (i.e., $\nabla_v v \equiv 0$).

Although it is perhaps not really necessary, we also assume that not all orbits of v are closed, otherwise, by Wadsley's Theorem [11], there exists an S^1 -action on M with the same orbits as v, and our problems should probably be studied in that context.

At each point $x \in M$ define $e_x = \max\{|\nabla_z v|^2 - K_{zv}\}$, where z ranges over all unit vectors $z \in T_x M$ perpendicular to v; here K_{zv} denotes the sectional curvature of M at x with respect to the 2-plane spanned by z and v.

Let φ^t be the flow generated by v and, for each $x \in M$ and any $t \ge 0$, define $E_{xt} = \max e_y$, where y ranges over the orbit interval $[\varphi^{-\sqrt{2}t}(x)]$, $\varphi^{\sqrt{2}t}(x)]$.

Theorem II. Assume $x \in M$ is such that $e_x \ge 0$ (for example, at x suppose $K_{zv} \le 0$ for some z as above). Then for any unit vector $u \in T_xM$ and all $t \ge 0$ we have

$$|d\varphi^{t}(u)|^{2} + |d\varphi^{-t}(u)|^{2} \leq 2\cosh^{2}t\sqrt{E_{xt}}.$$

Examples. (i) In the (trivial) case when v is also a Killing vector field, it is easy to see that $e_x \equiv 0$ and our inequality is sharp in this case (see §5).

(ii) If v is the geodesic flow on the unit sphere bundle SM^2 of a surface M^2 , and we consider the curvature as a function $K: M \to R$, then at the point $x = (y, \xi_v)$ of SM^2

$$2e_x = (K-1)^2 + [(K^2-1)^2 + (dK(\xi))^2]^{1/2} \ge 0$$

Received December 5, 1988.

and the above inequality holds with the corresponding E_{xt} (see §5).

Theorem II is an immediate corollary of a sharper inequality (see Theorem I, below) which however involves terms depending on $d\varphi^t$ on the right side, i.e., 'dynamic' terms, which do not seem to have an immediate 'static' expression like the quantity e_x above.

We also obtain a lower bound (see Theorem III of §4) from which as an immediate corollary we obtain

Theorem IV. Let $e'_x = \min\{-K_{zv}\}$ where z ranges over all unit vectors perpendicular to v, and let $E'_{xt} = \min e'_{y}$, where y ranges over the orbit interval $[\varphi^{-\sqrt{2}t}(x), \varphi^{\sqrt{2}t}(x)]$. If $E'_{xt} \geq 0$, for any unit vector $u \in T_x M$ and all t > 0, then we have

$$|d\varphi^{t}(u)|^{2} + |d\varphi^{-t}(u)|^{2} \ge 2\cosh^{2}t\sqrt{E'_{xt}}$$

Notice as a corollary, via the Liapunov exponents, one obtains bounds on the entropy of φ^{l} .

We thank K. Grove and the referee for helpful comments.

Statement of Theorem I

Denote by D the diagonal of $M \times M$ (with the product riemannian metric). On $M \times M$ define a unit vector field $V_{(x,y)} = 2^{-1/2}(v_x, -v_y)$, and let φ^t and Φ^t be the flows generated by v and V on M and $M \times M$, respectively.

Given $x \in M$ and t we define a real number as follows:

$$\bar{e}_{xt} = \max_{\overline{Z}} \{ \left| \nabla_{\overline{Z}} V \right|^2 - K_{\overline{Z}V} - \left| \beta(\overline{Z}, V) \right|^2 \},$$

where $\overline{Z} = d\Phi^{l}(Z)/|d\Phi^{l}(Z)|$ with $Z \in T_{(x,x)}D$, $\beta(\overline{Z}, V)$ is the orthogonal projection of $\nabla_{\overline{Z}}V$ into the *n*-plane $d\Phi^t(T_{(x\,,\,x)}D)$, and $K_{\overline{Z}V}$ is the sectional curvature of $M \times M$ at $\Phi^t(x, x)$ with respect to the 2-plane generated by \overline{Z} and V.

Define $\overline{E}_{xt} = \max \overline{e}_{x\tau}$ for $\tau \in [0, t]$ and assume $\overline{E}_{xt} \ge 0$. Theorem I. For any $x \in M$ and any unit vector $Z \in T_{(x,x)}D$ we have $|d\varphi^t(Z)| \leq \cosh t \sqrt{\overline{E}_{xt}} \text{ for all } t \text{ ; i.e., since } \Phi^t = (\varphi^{t/\sqrt{2}}, \varphi^{-t/\sqrt{2}}) \text{ , for every }$ unit vector $u \in T_xM$ we have

$$|d\varphi^{t}(u)|^{2} + |d\varphi^{-t}(u)|^{2} \le 2\cosh^{2}t\sqrt{2\overline{E}_{x\sqrt{2}t}}$$
 for all t .

Theorem II is obtained by simply dropping the β term above.

The number \bar{e}_{xt} can also be obtained as follows: Given $x \in M$ let $\{b_i\}$ be any (not necessarily orthonormal) basis of T_xM . Then for each real t define an $n \times n$ matrix B_t by

$$B_t = \{ \langle d\varphi^{t/\sqrt{2}}(b_i) d\varphi^{t/\sqrt{2}}(b_j) \rangle \},\,$$

and set $\mathscr{B}_t = B_t + B_{-t}$. Thus $2\bar{e}_{xt}$ is equal to the maximum eigenvalue of $\ddot{\mathscr{B}}_t \mathscr{B}_t^{-1} - \frac{1}{2} (\dot{\mathscr{B}}_t \mathscr{B}_t^{-1})^2$.

Our proof of Theorem I simply consists of applying a version of the Rauch Comparison Theorem (as stated on p. 188 in [3]) to orbits of the vector field V suitably "lifted" to the graph, $\mathfrak{G}(v)$, of the 1-foliation defined by v on M (see §2).

The number \bar{e}_{xt} is the maximum of the negative of the sectional curvature at $\Phi^t(x, x)$ of \mathfrak{G} with respect to all 2-planes containing V.

2. The associated vector field \overline{V}

In this section we substitute the study of v on M by the study of an intimately related vector field \overline{V} defined on the so-called graph, $\mathfrak{G} = \mathfrak{G}(v)$, of the 1-foliation defined by the vector field v. \overline{V} will also be a unit vector field whose orbits are geodesics of \mathfrak{G} , but in addition it will be the gradient of a certain riemannian submersion $\delta \colon \mathfrak{G} \to R$. Although perhaps this change of scenario is not so interesting in a purely topological way, it is nontrivial in the differential geometric sense.

Recall (see [12], [9]) that $\mathfrak{G} = \mathfrak{G}(v)$ consists of all triples $(x, y, [\alpha])$, where x and y lie on the same orbit, y, of v, and $[\alpha]$ is an equivalence class of arcs α contained in y; two arcs α , β are equivalent if the (foliation theoretic) holonomy along $\alpha\beta^{-1}$ is the identity. Hence, if v has no closed orbits as a set, \mathfrak{G} simply consists of the subset $\{(x,y) \in M \times M | x \text{ and } y \text{ lie on the same orbit of } v\}$, and it is convenient at first to go through our arguments by assuming this is the case.

If the holonomy of v is real analytic, then $\mathfrak G$ is an (n+1)-manifold in a natural way [12, p. 62], and one has a canonical immersion $I\colon \mathfrak G\to M\times M$ defined by $I((x,y,[\alpha]))=(x,y)$ and two submersions $p_1,p_2\colon \mathfrak G\to R$ defined by $p_1((x,y,[\alpha]))=x$ and $p_2((x,y,[\alpha]))=y$.

We make \mathfrak{G} into a riemannian manifold by requiring that I be an isometric immersion, i.e., we pull back the product metric of $M \times M$ via I.

Notice that the diagonal D (of $M \times M$) is a totally geodesic submanifold of \mathfrak{G} .

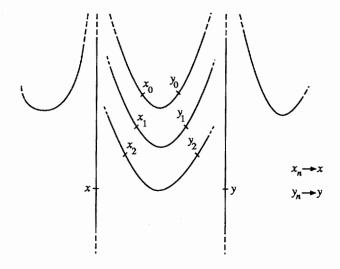


FIGURE 2.1

Proposition 2.1. If the orbits of v are geodesics, then this riemannian metric of $\mathfrak{G}(v)$ is complete for complete M.

Remark. It is necessary that the orbits be geodesics.

Consider the one-foliation of R^2 shown in Figure 2.1. The sequence $z_n = (x_n, y_n) \in \mathfrak{G}$ shown is a divergent Cauchy sequence in \mathfrak{G} , since the limits x and y lie in different orbits.

Proof of Proposition 2.1. Let $(x_n, y_n, [\alpha_n])$ be a Cauchy sequence in \mathfrak{G} . Then it is easy to see that x_n and y_n are Cauchy sequences in M, which converge to x and y respectively, since M is complete.

It is enough to show that x and y lie on the same orbit, and for this to happen it is enough to show that the lengths of the orbit segments s_n from x_n to y_n remain bounded for all n.

Let $a_n(t)$ and $b_n(t)$, $t \in [0, 1]$, be two smooth arcs in M from x_0 to x_n and y_0 to y_n , respectively, such that for all $t \in [0, 1]$, a(t) and b(t) lie on the same orbit, and let Σ denote the two-dimensional surface of M consisting of the union of the orbit arcs s_t from a(t) to b(t) for all $t \in [0, 1]$ (see Figure 2.2). Let w be the dual 1-form of v. Then (see Wadsley [11, p. 542]) $dw(\cdot, v) = 0$, and so dw = 0 on the 2-plane fields tangent to the surface Σ .

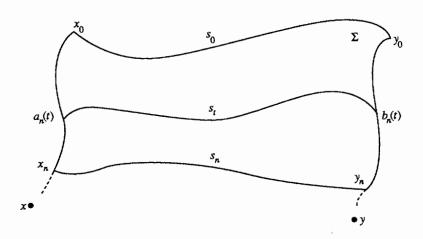


FIGURE 2.2

Applying Stokes' Theorem we obtain

$$\int_a w + \int_{s_0} w + \int_{s_n} w + \int_b w = \int_{\Sigma} dw = 0,$$

which shows the lengths of the orbit segments s_n are bounded for all n and Proposition 2.1 is proved.

Proposition 2.2. If not all orbits of v are closed, then no closed orbit γ can have (foliation theoretic) holonomy of finite order.

Proof. Let $\varphi^t(x)$ denote the flow of v. If γ_x , of length c, were such an orbit, it would follow from Wadsley's proof [8, Corollary 4.4 and the fact $B_1 = \emptyset$] that $\varphi^c(x)$ is the identity in a neighborhood of γ_x and hence, since v is real analytic, it is the identity on all of M, i.e., all orbits would be closed and of length c.

Let \overline{V} denote the unique C^{ω} vector field of $\mathfrak G$ defined at $(x, y, [\alpha])$ by $dp_1(\overline{V}) = v_x/\sqrt{2}$ and $dp_2(\overline{V}) = -v_y/\sqrt{2}$, where p_1 and p_2 are the natural projections of $\mathfrak G$ into M, i.e., $dI(\overline{V}) = V$.

Proposition 2.3. There exists a riemannian submersion $\delta \colon \mathfrak{G} \to R$ such that $\overline{V} = \operatorname{grad} \delta$.

Proof. Let U be a neighborhood of the diagonal D in $M \times M$ which is so small that the function $\delta_0: U \to R$ defined by $\delta_0(x, y) =$ oriented

¹We thank Y. Carrière for this short proof.

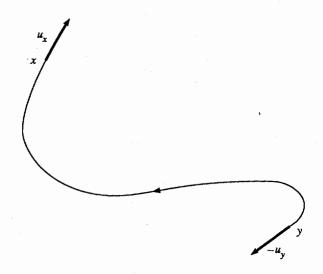


FIGURE 2.3

distance in M from x to y (with respect to the orientation of v) is well defined. By the Gauss Lemma applied to D, the gradient of δ_0 coincides (up to sign) with the vector $(u_x, -u_y)/\sqrt{2}$ of $M \times M$ at (x, y), where u_x and u_y are unit vectors of M tangent at x and y to the unique minimizing geodesic segment of M from x to y (see Figure 2.3).

Let U_0 denote a small enough neighborhood of D in $\mathfrak G$. Since the orbits of v are geodesics of M, the vector field $\overline V$ of $\mathfrak G$ restricted to U_0 coincides (up to sign) with the gradient of the function $\delta = \delta_0 \cdot I \colon U_0 \to R$, where $I \colon \mathfrak G \to M \times M$ is the natural isometric immersion. Since the orbits of V are geodesics in $M \times M$, the orbits of $\overline V$ are geodesics in $\mathfrak G$ and so the function δ is a riemannian submersion on U_0 (see [9, p. 155]).

Since U_0 is open in $\mathfrak G$ and $\overline V$ is real analytic, the same holds in all of $\mathfrak G$, where now the function δ is defined at any $(x,y,[\alpha])\in \mathfrak G$ as the oriented distance in M between x and y along the orbit γ with α indicating (in the case γ is closed) how many times one has to go around γ .

By Proposition 2.2, δ is actually univalent, and since I is injective (when restricted to U_0), it coincides with the local δ above.

Remark. Let w be the dual 1-form to v. Then it is easy to see that the 1-form on \mathfrak{G} , $\Omega = \frac{1}{2}(p_1^*(w) - p_2^*(w))$, is closed in \mathfrak{G} , and it is just the differential of $\delta \colon \mathfrak{G} \to R$ by Proposition 2.3. In the case (excluded

in this paper) where all orbits of v are closed, however, Ω can define a nontrivial element of $H^1(\mathfrak{G}, R)$.

3. Proof of Theorem I

In the following all geodesics will always be parametrized with respect to arc length. Let W be a complete riemannian manifold and $p: W \to R$ a riemannian submersion. Recall that then $|\operatorname{grad} p| \equiv 1$ and every orbit of $\operatorname{grad} p$ is a geodesic of W and conversely [9, p. 155]. We need the following results for whose proofs we give references when needed.

Lemma 3.1 (see [13, p. 262, Theorem 5.1]). No fiber $p^{-1}(\tau)$, $\tau \in R$, has focal points.

Let $F = p^{-1}(0)$ be totally geodesic in W. Let ψ' denote the flow on W generated by the gradient of p, and γ_x the orbit of grad p through x.

Lemma 3.2. For all t, any $x \in f$ and any unit vector $u \in T_x F$, $d\psi^t(u) = J(t)$, where J is the unique Jacobi field of W along γ_x such that J(0) = u and J(0) = 0.

Proof. Let $\alpha(s)$ be a curve in F through x such that $\frac{d\alpha}{ds} = u$ for s = 0, and consider the variation $\rho(s, t) = \psi^t(\alpha(s))$. Then the Jacobi field $J = \frac{\partial \rho}{\partial s}(0, t)$ satisfies J(0) = u and is normal to $\dot{\gamma}_x(t)$, and hence by [3, Proposition 3.6, p. 100] $\dot{J}(0)$ is also perpendicular to $\dot{\gamma}_x(0)$. However, since F is totally geodesic in W, by [3, Lemma 4.1, p. 181] (with N = F) $\dot{J}(0)$ is also parallel to $\dot{\gamma}_x(0)$, i.e., $\dot{J}(0) = 0$.

Combining this with a version of the Rauch Comparison Theorem [3, Theorem 4.7, p. 188] we obtain

Lemma 3.3. Let m_t be the minimum of the sectional curvature of W along the orbit interval $[\gamma_x(0), \gamma_x(t)]$ of γ_x with respect to all 2-planes tangent to γ_x , and assume $m_t \leq 0$. Then $|d\psi^t(u)| \leq \cosh t \sqrt{-m_t}$ for every unit vector $u \in T_v F$.

Here we have also used the following elementary fact (with $K=m_t$): On a manifold of constant nonpositive sectional curvature K, a Jacobi field J with the above properties satisfies $|J(t)|=\cosh t\sqrt{-K}$ with respect to any geodesic (see [6, p. 119]).

Denote by $\overline{\Phi}^l$ the flow of \overline{V} on \mathfrak{G} . Since the diagonal D is a totally geodesic submanifold of \mathfrak{G} , by Proposition 2.3 we can apply Lemma 3.3 (with $\mathfrak{G}=W$, $\delta=p$, D=F, $\overline{\Phi}^l=\psi^l$) and obtain $|d\overline{\Phi}^l_{(x,x)}(z)|\leq \cosh t\sqrt{-m_l}$ for any unit vector z tangent to the diagonal D.

Since $I: \mathfrak{G} \to M \times M$ is an isometric immersion we have $|d\overline{\Phi}| = |d\Phi|$, and since the following computations are local we assume \mathfrak{G} is a submanifold of $M \times M$ with the induced riemannian metric.

We show $-m_t = \overline{E}_{xt}$ (see §1): let $Z \in T\mathfrak{G}$, let $\alpha(Z,V)$ be the second fundamental form of \mathfrak{G} in $M \times M$, and let \overline{K}_{ZV} and K_{ZV} be the sectional curvatures of \mathfrak{G} and $M \times M$, with respect to the 2-plane spanned by Z and V. Since $\alpha(V,V)=0$, the Gauss formula gives $-\overline{K}_{ZV} = |\alpha(Z,V)|^2 - K_{ZV}$, and if $\overline{\nabla}$ and ∇ denote the covariant derivatives in \mathfrak{G} and $M \times M$, we have $|\nabla_Z V|^2 = |\overline{\nabla}_Z V|^2 + |\alpha(Z,V)|^2$ and $\langle V, \overline{\nabla}_Z V \rangle = 0$ (because $|V| \equiv 1$). Since the manifold $\overline{\Phi}^t(D)$ is a fiber of $\delta \colon \mathfrak{G} \to R$, i.e., perpendicular to \overline{V} , we get $\overline{\nabla}_Z V = \beta(Z,V)$ (see §1), i.e., $-\overline{K}_{ZV} = |\nabla_Z V|^2 - K_{ZV} - |\beta(Z,V)|^2$, and $-m_t = \overline{E}_{xt}$ follows.

To prove Theorem II simply drop the β term in Theorem I and compute in terms of M (instead of $M \times M$).

Finally, we need the following.

Lemma 3.4. Let w be a unit vector field with geodesic orbits on the riemannian manifold N^n , and let f' denote its flow. In addition, assume the (n-1)-plane field, w^\perp , perpendicular to w, is integrable, let a_j $(j=1,\cdots,n-1)$ be a basis of w^\perp at a point $x\in N$, and let A_t denote the $(n-1)\times(n-1)$ matrix $\{\langle df^t(a_i),df^t(a_j)\rangle\}$. Then $\mu_{xt}=\max\{-K_{zw}\}$ at $f^t(x)$ is equal to the maximum eigenvalue of the matrix $\frac{1}{2}\ddot{A}_tA_t^{-1}-\frac{1}{4}(\dot{A}_tA_t^{-1})^2$, where z ranges over all unit vectors perpendicular to w.

Proof. Let y_j , $j=1,\cdots,n-1$, be a chart of the leaf through x such that $\partial/\partial y_j=a_j$ at x. Consider the chart of N at x defined by $x_i=f^t(y_i)$ for i< n and $x_n=t$, and set $X_i=\partial/\partial x_i$; thus $X_n=w$.

Let G_t denote the $n \times n$ matrix $\{g_{ij}\}$ at f'(x) of this chart, and observe that since $g_{nn} \equiv 1$ and w^{\perp} is integrable, G_t is obtained from A_t by adding a 1 to the diagonal and 0's elsewhere, i.e., $g_{ni} = 0$ for i < n. This implies $\{\Gamma_{in}^s\} = \frac{1}{2} \dot{G}_t G_t^{-1}$ for all i < n; furthermore, since $\Delta_w w \equiv 0$, $\Gamma_{nn}^s = 0$.

Let R denote the curvature tensor of N; by a well-known elementary fact about matrices, $-\nu_{xt}$ above, i.e., the maximum of the quadratic form $\langle R(w\,,\,z)w\,,\,z\rangle$ (where $|z|=1\,,\,z\in w^\perp$), is equal to the maximum eigenvalue of the matrix $\{R_{njn}^s\}$ defined by $R(w\,,\,X_j)w=R(X_n\,,\,X_j)X_n=\sum_s R_{njn}^s X_s$. Since

$$R_{njn}^{s} = \sum_{l} \Gamma_{nn}^{l} \Gamma_{jl}^{s} - \sum_{l} \Gamma_{jn}^{l} \Gamma_{nl}^{s} + \frac{\partial}{\partial x_{j}} \Gamma_{nn}^{s} - \frac{\partial}{\partial x_{n}} \Gamma_{jn}^{s}$$

(see [3, (2), p. 81]), the relations above imply

$$-R_{njn}^{s} = \frac{\partial}{\partial x_{n}} \Gamma_{jn}^{s} + \sum_{l} \Gamma_{jn}^{l} \Gamma_{nl}^{s} = \frac{1}{2} (\dot{G}_{t} G_{t}^{-1})^{1} + \frac{1}{4} (\dot{G}_{t} G_{t}^{-1})^{2}$$
$$= \frac{1}{2} \ddot{G}_{t} G_{t}^{-1} - \frac{1}{4} (\dot{G}_{t} G_{t}^{-1})^{2},$$

whose eigenvalues are the same as those of the $(n-1) \times (n-1)$ matrix $\frac{1}{2}\ddot{A}_tA_t^{-1} - \frac{1}{4}(\dot{A}_tA_t^{-1})^2$, and Lemma 3.4 is proven. To obtain the remaining unproven result of §1 apply Lemma 3.4 with

 $N = \mathfrak{G}$, $w = \overline{V}$ and $f' = \overline{\Phi}^t$.

A lower bound

Define \bar{e}'_{rt} as in §1 except using the minimum (instead of the maximum) and let $\overline{E}'_{xt} = \min \overline{e}'_{x\tau}$ for $\tau \in [0, t]$; suppose $\overline{E}'_{xt} \ge 0$. Theorem III. For any $x \in M$ and any unit vector $u \in T_x M$, we have

$$|d\varphi^{t}(u)|^{2}+|d\varphi^{-t}(u)|^{2}\geq 2\cosh^{2}t\sqrt{2\overline{E}'_{x\sqrt{2}t}}$$
 for all $t\geq 0$.

Proof. This is a straightforward consequence of our Lemma 3.2 (with $W = \mathfrak{G}$, $p = \delta$, $\psi^t = \overline{\Phi}^t$, F = D, inequality 4.10 of [5, Theorem 4.1', p. 48] and our computations in §3 above.

Since $|\nabla_{\overline{Z}}V|^2 \ge |\beta(\overline{Z}, V)|^2$ Theorem IV follows immediately.

5. **Examples**

(i) Using the notation of the Introduction one easily shows (using formula (9), p. 47 of [3]) that at every $x \in M$

$$\left| \nabla_z v \right|^2 - K_{zv} = v \, \langle z \, , \, \nabla_z v \rangle + \langle z \, , \, \nabla_{[z \, , \, v]} v \rangle + \langle [z \, , \, v] \, , \, \nabla_z v \rangle$$

for every unit vector $z \in T_x M$ perpendicular to v . Hence, using Killing's equation [3, p. 72] we obtain $e_x \equiv 0$ if v is also a Killing vector field.

Although, of course, this case is trivial, this formula relates, in general, the quantity e_x to the obstruction of v being Killing.

(ii) Let S denote the vector field which generates the geodesic flow on the unit sphere bundle, SM (provided with the Sasaki metric), of a riemannian manifold M. Then S is a unit vector field whose orbits are geodesics (see [10]).

First observe that the quantity $|\nabla_Z S|^2 - K_{ZS}$, where $Z \in TSM$, $\langle Z, S \rangle = 0$, is the same, whether we compute in SM or in TM, and so we use TM.

We use the notation [4, p. 76] and [7], which we assume the reader has at hand. (Notice that their curvature tensor R is the negative of ours.)

Let ξ be a unit vector belonging to T_xM ; the following quantities of TTM are assumed to be computed at the point (x, ξ) of SM.

The unit normal vector field of SM in TM is given by $n = \sum \xi^i X_i^{\nu}$ and $S = \sum \xi^i X_i^{h}$. Using formulas (10) and (11) of [7, p. 125] and formulas (24) and (25) of [4, p. 79] one computes

$$\tilde{\nabla}_{U^h} S = -\frac{1}{2} [R(\xi, U)\xi]^{\nu}$$
 and $\tilde{\nabla}_{U^{\nu}} S = U^h - \frac{1}{2} [R(\xi, U)\xi]^h$

for any vector field U of M.

Let $Z \in TTM$, set $Z = Y_1^h + Y_2^\nu$, where Y_1 $Y_2 \in T_xM$, and notice if $\langle Z, S \rangle = 0$ and $Z \in TSM$ (i.e., $\langle Z, n \rangle = 0$) then $\langle Y_1, \xi \rangle = \langle Y_2, \xi \rangle = 0$ in T_xM .

Now let dim M=2 and, given $U \in TM$, let \overline{U} denote a unit vector normal to U; consider the sectional curvature of M as a function $K: M \to R$.

Using formulas (18) and (21) of [7] and the fact that if $\dim M=2$ then $\langle (\nabla_U R)(U\,,\,\overline{U})U\,,\,\overline{U}\rangle = -dK(U)$ for any unit vector field U of M, we obtain

$$|\hat{\nabla}_{Z}S|^{2} - K_{ZS} = K^{2}|Y_{1}|^{2} + |Y_{2}|^{2} + Y_{1}'Y_{2}'dK(\xi) - K$$

(where Y_1' , Y_2' denote the numbers defined by $Y_1 = Y_1'\bar{\xi}$, $Y_2 = Y_2'\bar{\xi}$) from which the expression for e of S of SM^2 at the point (x, ξ_x) in the Introduction easily follows.

6. Remarks and questions

Our method is quite different and more general than those of [1], [2] and [8] which start off by assuming v is a geodesic flow. Furthermore, when applied to geodesic flows (at least on surfaces) our inequality in $\S 5(ii)$ is sharper than the easily obtained inequality in [2, Appendix, p. 270].

Are our inequalities sharp enough to solve Osserman's problem [1, Problem 1.8, p. 6]?

Are Theorems II and IV really the sharpest 'static' corollaries of Theorems I and III? Even in the case of geodesic flows?

References

- [1] W. Ballmann, Curvature and topology of Riemannian manifolds (Proc., Katata), Lecture Notes in Math., Vol. 1201, Springer, Berlin, 1985.
- [2] W. Ballmann, M. Brin & K. Burns, On surfaces with no conjugate points, J. Differential Geometry 25 (1987) 249-273.
- [3] M. P. do Carmo, Geometria Riamanniana, IMPA, Rio de Janeiro, 1979.
- [4] P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962) 72-88.
- [5] S. Hildebrandt, In harmonic maps and minimal immersions (Proc., Montecattini, E. Giusti, eds.), Lecture Notes in Math., Vol. 1161, Springer, Berlin, 1985.
- [6] W. Klingenberg, Riemannian geometry, De Gruyter Studies in Math., Vol. 1, 1982.
- [7] O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a manifold, J. Reine Angew. Math. 250 (1971) 124-129.
- [8] R. Osserman & P. Sarnak, A new curvature invariant and entropy of geodesic flows, Invent. Math. 77 (1984) 455-462.
- [9] B. L. Reinhart, Differential geometry of foliations, Ergebnisse Math. u.i. Grenzgeb., Vol. 99, Springer, Berlin, 1983.
- [10] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds. II, Tôhoku Math. J. 14 (1962) 146-155.
- [11] A. W. Wadsley, *Geodesic foliations by circles*, J. Differential Geometry **10** (1975) 541–549.
- [12] H. E. Winkelnkemper, The graph of a foliation, Ann. Global Analysis and Geometry 1 (1983) 51-75.
- [13] S. Yorozu, Behaviour of geodesics in foliated manifolds with bundle-like metrics, J. Math. Soc. Japan (Nihon Sugakai) 35 (1983) 251-271.

University of Maryland